Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Pathol Res Pract ; 258: 155330, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38733868

RESUMEN

Mitochondrial DNA (mtDNA) is a circular double-stranded genome that exists independently of the nucleus. In recent years, research on mtDNA has significantly increased, leading to a gradual increase in understanding of its physiological and pathological characteristics. Reactive oxygen species (ROS) and other factors can damage mtDNA. This damaged mtDNA can escape from the mitochondria to the cytoplasm or extracellular space, subsequently activating immune signaling pathways, such as NLR family pyrin domain protein 3 (NLRP3), and triggering inflammatory responses. Numerous studies have demonstrated the involvement of mtDNA damage and leakage in the pathological mechanisms underlying various diseases including infectious diseases, metabolic inflammation, and immune disorders. Consequently, comprehensive investigation of mtDNA can elucidate the pathological mechanisms underlying numerous diseases. The prevention of mtDNA damage and leakage has emerged as a novel approach to disease treatment, and mtDNA has emerged as a promising target for drug development. This article provides a comprehensive review of the mechanisms underlying mtDNA-induced inflammation, its association with various diseases, and the methods used for its detection.

2.
World J Diabetes ; 15(3): 502-518, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38591083

RESUMEN

BACKGROUND: Jianpi Gushen Huayu Decoction (JPGS) has been used to clinically treat diabetic nephropathy (DN) for many years. However, the protective mechanism of JPGS in treating DN remains unclear. AIM: To evaluate the therapeutic effects and the possible mechanism of JPGS on DN. METHODS: We first evaluated the therapeutic potential of JPGS on a DN mouse model. We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics. Furthermore, we examined the effects of JPGS on c-Jun N-terminal kinase (JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/NOD-like receptor family pyrin domain containing 3 (NLRP3). RESULTS: The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress. Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice. A total of 51 differential metabolites were screened. Pathway analysis results indicated that nine pathways significantly changed between the control and model groups, while six pathways significantly altered between the model and JPGS groups. Pathways related to cysteine and methionine metabolism; alanine, tryptophan metabolism; aspartate and glutamate metabolism; and riboflavin metabolism were identified as the key pathways through which JPGS affects DN. Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors. CONCLUSION: JPGS could markedly treat mice with streptozotocin (STZ)-induced DN, which is possibly related to the regulation of several metabolic pathways found in kidneys. Furthermore, JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathway-mediated apoptosis in DN mice.

3.
J Diabetes Res ; 2024: 9990304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523631

RESUMEN

Background: Diabetic nephropathy (DN), one of the most frequent complications of diabetes mellitus, is a leading cause of end-stage renal disease. However, the current treatment methods still cannot effectively halt the progression of DN. Jian-Pi-Gu-Shen-Hua-Yu (JPGS) decoction can be used for the treatment of chronic kidney diseases such as DN, but the specific mechanism of action has not been fully elucidated yet. Purpose: The aim of this study is to clarify whether JPGS alleviates the progression of diabetic nephropathy by inhibiting ferroptosis. Materials and Methods: We established a DN mouse model to investigate the therapeutic effect of JPGS in a DN mouse model. Subsequently, we examined the effects of JPGS on ferroptosis- and glutathione peroxidase 4 (GPX4) pathway-related indices. Finally, we validated whether JPGS inhibited ferroptosis in DN mice via the GPX4 pathway using GPX4 inhibitor and ferroptosis inhibitors. Results: The results indicate that JPGS has a therapeutic effect on DN mice by improving kidney function and reducing inflammation. Additionally, JPGS treatment decreased iron overload and oxidative stress levels while upregulating the expression of GPX4 pathway-related proteins. Moreover, JPGS demonstrated a similar therapeutic effect as Fer-1 in the context of DN treatment, and RSL3 was able to counteract the therapeutic effect of JPGS and antiferroptotic effect. Conclusion: JPGS has significant therapeutic and anti-inflammatory effects on DN mice, and its mechanism is mainly achieved by upregulating the expression of GPX4 pathway-related proteins, thereby alleviating iron overload and ultimately reducing ferroptosis.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Sobrecarga de Hierro , Animales , Ratones , Nefropatías Diabéticas/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/tratamiento farmacológico
4.
Phytomedicine ; 128: 155509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452403

RESUMEN

BACKGROUND: Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS: A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS: WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [ß-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor ß-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1ß, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION: WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.


Asunto(s)
Azoximetano , Neoplasias Asociadas a Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolómica , Transcriptoma , Animales , Medicamentos Herbarios Chinos/farmacología , Ratones , Masculino , Neoplasias Colorrectales , Ratones Endogámicos C57BL , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colitis/inducido químicamente
5.
Shock ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526139

RESUMEN

ABSTRACT: Currently, the coronavirus disease 2019 (COVID-19) is becoming a serious threat to human health worldwide. Therefore, there is a great need to develop effective drugs against viral pneumonia. Diammonium glycyrrhizinate (DG), derived from Glycyrrhiza glabra L., has been demonstrated with significant anti-inflammatory properties. However, the therapeutic effects and mechanisms of DG on pneumonia require further clarification. In this study, mice received intratracheal injection of polyinosinic-polycytidylic acid (poly(I:C)) to induce pneumonia and were treated with DG. First, we evaluated the therapeutic potential of DG on poly(I:C)-induced pneumonia. Second, the anti-inflammatory and anti-oxidative activities and the impact of DG on the Toll-like receptor 3 (TLR3) pathway were investigated. Third, the mechanism of DG was analyzed through untargeted metabolomics techniques. Our results revealed that DG intervention decreased permeability and reduced abnormal lung alterations in poly(I:C)-induced pneumonia model mice. DG intervention also downregulated cytokine levels in bronchoalveolar lavage fluid. Moreover, DG treatment inhibited the activation of TLR3 pathway. Furthermore, untargeted metabolomics analysis revealed that DG intervention could modulate serum metabolites involved in amino and nucleotide sugar metabolism, fructose and mannose metabolism, tyrosine metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis pathways. In conclusion, our study showed that DG could ameliorate poly(I:C)-induced pneumonia by inactivating the TLR3 pathway and affecting amino and nucleotide sugar, fructose and mannose metabolism, as well as tryptophan, phenylalanine, and tyrosine biosynthesis.

6.
J Cell Mol Med ; 28(7): e18194, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506086

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
7.
Cell Commun Signal ; 22(1): 99, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317142

RESUMEN

The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.


Asunto(s)
Interleucina-17 , Linfocitos T Reguladores , Humanos , Interleucina-10 , Células Th17 , Inflamación
8.
J Neuroimmunol ; 387: 578281, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38198981

RESUMEN

BACKGROUND: Polygalasaponin F (PGSF), an oleanane triterpenoid saponin extracted from Polygala japonica, has been demonstrated with neuroprotective effect. However, the therapeutic effects and mechanisms of PGSF on focal ischemia remain unknown; METHODS: In this study, male Sprague Dawley (SD) rats aged 6-8 weeks were initially selected to establish a rat model of middle cerebral artery occlusion (MCAO) to evaluate the therapeutic effect of PGSF intervention and to investigate the impact of PGSF on the thioredoxin-interacting protein/NOD-, LRR-, and pyrin domain-containing protein 3 (TXNIP/NLRP3) inflammatory pathway. Secondly, brain neuron cells were isolated, and the cells received oxygen-glucose deprivation/reoxygenation (OGD/R) culture to establish the cell injury model in vitro. The mechanism of PGSF on the TXNIP/NLRP3 pathway was further validated; RESULTS: Our results showed that PGSF treatment reduced neurological scores, brain tissue water content and infarct volume and ameliorated the pathological changes in cerebral cortex in MCAO-induced focal ischemia rats. The TNF-α, IL-1ß and IL-6 levels decreased in MCAO-induced focal ischemia rats after PGSF treatment. Moreover, PGSF down-regulated the protein expressions of TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1ß, and IL-18 in MCAO-induced focal ischemia rats. Meanwhile, PGSF treatment inhibited apoptosis, and reduced the levels of ROS, inflammatory cytokine and TXNIP/NLRP3 pathway-related proteins (TXNIP, NLRP3, ASC, cleaved caspase-1, IL-1ß, and IL-18) in OGD/R-induced neuronal injury cells. Finally, PGSF treatment also disrupted the interaction between NLRP3 and TXNIP in vitro; CONCLUSIONS: Our study demonstrated the therapeutic effects of PGSF on MCAO-induced focal ischemia rats. Moreover, the neuroprotective mechanism of PGSF on focal ischemia was associated with the inhibition of TXNIP/NLRP3 signaling pathway.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Saponinas , Triterpenos , Ratas , Animales , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-18 , Ratas Sprague-Dawley , Inflamasomas , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Transducción de Señal , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Caspasa 1/metabolismo , Proteínas de Ciclo Celular
9.
Phytomedicine ; 124: 155285, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185065

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), carries a high risk of cirrhosis and hepatocellular carcinoma. With the increasing incidence of NASH, the accompanying medical burden is also increasing rapidly, so the development of safe and reliable drugs is urgent. Formononetin (FMNT) has a variety of pharmacological effects such as antioxidant and anti-inflammation, and plays a major role in regulating lipid metabolism, reducing hepatic steatosis and so on, but the mechanism for alleviating NASH is unclear. MATERIALS AND METHODS: We firstly established a mouse model on NASH through methionine-choline deficient (MCD) diet to investigate the improvement of FMNT as well as the effects of fatty acid ß oxidation and SIRT1/PGC-1α/PPARα pathway. Then, we explored the mechanisms of FMNT regulation in SIRT1/PGC-1α/PPARα pathway and fatty acid ß oxidation based on genes silencing of SIRT1 and PGC1A. In addition, SIRT1 agonist (SRT1720) and inhibitor (EX527) were used to verify the mechanism of FMNT on improvement of NASH. RESULTS: Our study found that after FMNT intervention, activities of ALT and AST and TG level were improved, and liver function and hepatocellular steatosis on NASH mice were significantly improved. The detection of ß oxidation related indicators showed that FMNT intervention up-regulated FAO capacity, level of carnitine, and the levels of ACADM and CPT1A. The detection of factors related to the SIRT1/PGC-1α/PPARα pathway showed that FMNT activated and promoted the expression of SIRT1/PGC-1α/PPARα pathway, including up-regulating the expression level of SIRT1, improving the activity of SIRT1, promoting the deacetylation of PGC-1α, and promoting the transcriptional activity of PPARα. Furthermore, after genes silencing of SIRT1 and PGC1A, we found that FMNT intervention could not alleviate NASH, including improvement of hepatocellular steatosis, enhancement of ß oxidation, and regulation of SIRT1/PGC-1α/PPARα pathway. Afterwards, we used SRT1720 as a positive control, and the results indicated that FMNT and SRT1720 intervention had no significant difference on improving hepatocellular steatosis and promoting fatty acid ß oxidation. Besides, we found that when EX527 intervention inhibited expression of SIRT1, the improvement of FMNT on NASH was weakened or even disappeared. CONCLUSION: In summary, our results demonstrated that FMNT intervention activated SIRT1/PGC-1α/PPARα pathway to promote fatty acid ß oxidation and regulate lipid metabolism in liver, ultimately improved hepatocellular steatosis on NASH mice.


Asunto(s)
Isoflavonas , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , PPAR alfa/metabolismo , Sirtuina 1/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/patología , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL
10.
Shock ; 61(4): 638-645, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37983962

RESUMEN

ABSTRACT: Sepsis-induced cardiomyopathy ( SIC ) is a distinct form of myocardial injury that disrupts tissue perfusion and stands as the significant cause of mortality among sepsis patients. Currently, effective preventive or treatment strategies for SIC are lacking. YiQiFuMai injection (YQFM), composed of Panax ginseng C.A. Mey., Ophiopogon japonicus (Thunb.) Ker Gawl., and Schisandra chinensis (Turcz.) Baill., is widely used in China to treat cardiovascular diseases, such as coronary heart disease, heart failure, and SIC . Research has shown that YQFM can improve cardiac function and alleviate heart failure through multiple pathways. Nevertheless, the mechanisms through which YQFM exerts its effects on SIC remain to be fully elucidated. In this study, we firstly investigated the therapeutic effects of YQFM on a SIC rat model and explored its effects on myocardial ferroptosis in vivo. Then, LPS-induced myocardial cell death model was used to evaluate the effects of YQFM on ferroptosis and xCT/GPX4 axis in vitro . Furthermore, using GPX4 inhibitors, we aimed to verify whether YQFM improved cardiomyocyte ferroptosis through the xCT/GPX4 axis. The results showed that YQFM was effective in alleviating myocardial injury in septic model rats. Besides, the concentrations of iron and the levels of lipid peroxidation-related factors (ROS, MDA, and 4-HNE) were significantly decreased and the expression of xCT/GPX4 axis was upregulated in SIC rats after YQFM treatment. In vitro studies also showed that YQFM alleviated iron overload and lipid peroxidation and activated xCT/GPX4 axis in LPS-induced myocardial cell death model. Moreover, GPX4 inhibitor could abolish the effects above. In summary, the study highlights the regulatory effect of YQFM in mitigating myocardial injury. It probably achieves this ameliorative effect by enhancing xCT/GPX4 axis and further reducing ferroptosis.


Asunto(s)
Cardiomiopatías , Medicamentos Herbarios Chinos , Ferroptosis , Insuficiencia Cardíaca , Lesiones Cardíacas , Sepsis , Humanos , Animales , Ratas , Lipopolisacáridos/toxicidad , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/etiología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
11.
Biomed Chromatogr ; 38(1): e5763, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858975

RESUMEN

Alisol B 23-acetate (AB23A) has been demonstrated to have beneficial effects on nonalcoholic steatohepatitis (NASH). However, the mechanisms of AB23A on NASH remain unclear. This study aimed to investigate the mechanisms underlying the metabolic regulatory effects of AB23A on NASH. We used AB23A to treat mice with NASH, which was induced by a methionine and choline deficient (MCD) diet. We initially investigated therapeutic effect and resistance to oxidation and inflammation of AB23A on NASH. Subsequently, we performed untargeted metabolomic analyses and relative validation assessments to evaluate the metabolic regulatory effects of AB23A. AB23A reduced lipid accumulation, ameliorated oxidative stress and decreased pro-inflammatory cytokines in the liver. Untargeted metabolomic analysis found that AB23A altered the metabolites of liver. A total of 55 differential metabolites and three common changed pathways were screened among the control, model and AB23A treatment groups. Further tests validated the effects of AB23A on modulating common changed pathway-involved factors. AB23A treatment can ameliorate NASH by inhibiting oxidative stress and inflammation. The mechanism of AB23A on NASH may be related to the regulation of alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and arginine biosynthesis pathways.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metionina/metabolismo , Metionina/farmacología , Colina , Hígado/metabolismo , Racemetionina/metabolismo , Racemetionina/farmacología , Dieta , Inflamación/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
12.
J Diabetes Res ; 2023: 9164883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37840577

RESUMEN

Diabetic nephropathy (DN) is a metabolic disease wherein chronic hyperglycemia triggers various renal cell dysfunctions, eventually leading to progressive kidney failure. Rosa laevigata Michx. is a traditional Chinese herbal medicine. Many studies have confirmed its antioxidative, anti-inflammatory, and renoprotective effects. However, the effects and mechanisms of Rosa laevigata Michx. polysaccharide (RLP) in DN remain unclear. In this study, a DN mouse model was established to investigate the therapeutic effect of RLP on DN mice. Then, nontargeted metabolomics was used to analyze the potential mechanism of RLP in the treatment of DN. Finally, the effects of RLP on ferroptosis and the PI3K/AKT pathway were investigated. The results demonstrated that RLP effectively alleviated renal injury and reduced inflammation and oxidative stress in the kidney. In addition, nontargeted metabolomic analysis indicated that RLP could modulate riboflavin metabolism and tryptophan metabolism in DN mice. Notably, ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney were also ameliorated following RLP treatment. In conclusion, this study confirmed that RLP had a significant therapeutic effect on DN mice. Furthermore, RLP treatment modulated tryptophan metabolism and inhibited ferroptosis and PI3K/AKT pathway-mediated apoptosis in the kidney.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Rosa , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Triptófano/farmacología , Triptófano/uso terapéutico , Transducción de Señal , Apoptosis
13.
Technol Cancer Res Treat ; 22: 15330338231190545, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37605558

RESUMEN

Lung cancer is one of the leading causes of cancer-related deaths worldwide. However, there are currently limited treatment options that are widely available to patients with advanced lung cancer, and further research is required to inhibit or reverse disease progression more effectively. In lung and other solid tumor cancers, autophagy and glycometabolic reprograming are critical regulators of malignant development, including proliferation, drug resistance, invasion, and metastasis. To provide a theoretical basis for therapeutic strategies targeting autophagy and glycometabolic reprograming to prevent lung cancer, we review how autophagy and glycometabolism are regulated in the malignant development of lung cancer based on research progress in other solid tumors.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Pulmón/patología , Autofagia
14.
Phytomedicine ; 118: 154937, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393831

RESUMEN

BACKGROUND: Polygala japonica Houtt. (PJ) has been demonstrated with several biological potentials such as lipid-lowering and anti-inflammatory effects. However, the effects and mechanisms of PJ on nonalcoholic steatohepatitis (NASH) remain unclear. PURPOSE: The aim of this study was to evaluate the effects of PJ on NASH and illustrate the mechanism based on modulating gut microbiota and host metabolism. MATERIALS AND METHODS: NASH mouse model was induced using methionine and choline deficient (MCD) diet and orally treated with PJ. The therapeutic, anti-inflammatory, and anti-oxidative effects of PJ on mice with NASH were firstly assessed. Then, the gut microbiota of mice was analyzed using 16S rRNA sequencing to assess the changes. Finally, the effects of PJ on the metabolites in liver and feces were explored by untargeted metabolomics. RESULTS: The results indicated that PJ could improve hepatic steatosis, liver injury, inflammatory response, and oxidative stress in NASH mice. PJ treatment also affected the diversity of gut microbiota and changed the relative abundances of Faecalibaculum. Lactobacillus, Muribaculaceae, Dubosiella, Akkermansia, Lachnospiraceae_NK4A136_group, and Turicibacter in NASH mice. In addition, PJ treatment modulated 59 metabolites both in liver and feces. Metabolites involved in histidine, and tryptophan metabolism pathways were identified as the key metabolites according to the correlation analysis between differential gut microbiota and metabolites. CONCLUSION: Our study demonstrated the therapeutic, anti-inflammatory and anti-oxidative potentials of PJ on NASH. The mechanisms of PJ treatment were related to the improvement of gut microbiota dysbiosis and the regulation of histidine and tryptophan metabolism.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Polygala , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polygala/genética , ARN Ribosómico 16S , Histidina/metabolismo , Histidina/farmacología , Histidina/uso terapéutico , Triptófano/metabolismo , Triptófano/farmacología , Triptófano/uso terapéutico , Hígado , Heces , Ratones Endogámicos C57BL
15.
Biomed Pharmacother ; 165: 115086, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37418978

RESUMEN

Diabetic nephropathy (DN) is one of the main complications of diabetes. However, effective therapy to block or slow down the progression of DN is still lacking. San-Huang-Yi-Shen capsule (SHYS) has been shown to significantly improve renal function and delay the progression of DN. However, the mechanism of SHYS on DN is still unclear. In this study, we established a mouse model of DN. Then, we investigated the anti-ferroptotic effects of SHYS including the reduction of iron overload and the activation of cystine/GSH/GPX4 axis. Finally, we used a GPX4 inhibitor (RSL3) and ferroptosis inhibitor (ferrostatin-1) to determine whether SHYS ameliorates DN through inhibiting ferroptosis. The results showed that SHYS treatment was effective for mice with DN in terms of improving renal function, and reducing inflammation and oxidative stress. Besides, SHYS treatment reduced iron overload and upregulated the expression of cystine/GSH/GPX4 axis-related factors in kidney. Moreover, SHYS exhibited similar therapeutic effect on DN as ferrostatin-1, RSL3 could abolish the therapeutic and anti- ferroptotic effects of SHYS on DN. In conclusion, SHYS can be used to treat mice with DN. Furthermore, SHYS could inhibit ferroptosis in DN through reducing iron overload and upregulating the expression of cystine/GSH/GPX4 axis.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , Sobrecarga de Hierro , Animales , Ratones , Nefropatías Diabéticas/tratamiento farmacológico , Cistina
16.
Artículo en Inglés | MEDLINE | ID: mdl-37159591

RESUMEN

Liang-Ge (LG) decoction could ameliorate coagulation dysfunction in septic model rats. However, the mechanism of LG in treating sepsis still needs to be clarified. Our current study established a septic rat model to evaluate the effect of LG on coagulation dysfunction in septic rats first. Second, we investigated the effect of LG on NET formation in septic rats. Finally, NETs and PAD4 inhibitors were further used to clarify if LG could improve the mechanism of sepsis coagulation dysfunction by inhibiting NET formation. Our findings indicated that treatment with LG improved the survival rate, reduced inflammatory factor levels, enhanced hepatic and renal function, and reduced pathological changes in rats with sepsis. LG could also alleviate coagulation dysfunction in septic model rats. Besides, LG treatment reduced NETs formation and decreased PAD4 expression in neutrophiles. In addition, LG treatment showed a similar result in comparison to the treatment with either NET inhibitors or PAD4 inhibitors alone. In conclusion, this study confirmed that LG has therapeutic effects on septic rats. Furthermore, the improvement of coagulation dysfunction in septic rats by LG was achieved through inhibiting PAD4-mediated NET formation.

17.
Curr Drug Metab ; 24(4): 270-282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038712

RESUMEN

BACKGROUND: Polygonatum sibiricum polysaccharide (PSP) can improve insulin resistance and inhibit oxidative stress. However, the detailed anti-diabetic mechanism of PSP is still poorly defined. METHODS: In this study, the anti-diabetic, anti-inflammatory and anti-oxidative effects of PSP were evaluated on a type 2 diabetes mellitus (T2DM) rat model. Furthermore, we investigated the changes in gut microbiota and serum metabolites in T2DM rats after PSP treatment through 16S rRNA sequencing and untargeted metabolomics analyses. RESULTS: Our results showed that PSP exhibited significant anti-diabetic, anti-inflammatory and anti-oxidative effects on T2DM model rats. In addition, 16S rRNA sequencing showed that PSP treatment decreased the Firmicutes/ Bacteroidetes ratio in the gut. At the genus level, PSP treatment increased the relative abundances of Blautia, Adlercreutzia, Akkermansia and Parabacteroides while decreasing Prevotella, Megamonas funiformis and Escherichia. Untargeted metabolomics analysis revealed that PSP treatment could affect 20 metabolites, including hexanoylglycine, (±)5(6)-DiHET, ecgonine, L-cysteine-S-sulfate, epitestosterone, (±)12(13)-DiHOME, glutathione, L-ornithine, Dmannose 6-phosphate, L-fucose, L-tryptophan, L-kynurenine, serotonin, melatonin, 3-hydroxyanthranilic acid, xylitol, UDP-D-glucuronate, hydroxyproline, 4-guanidinobutyric acid, D-proline in T2DM model rats, these metabolites are associated with arginine and proline metabolism, tryptophan metabolism, amino sugar and nucleotide sugar metabolism, pentose and glucuronate interconversions, glutathione metabolism, arginine biosynthesis, ascorbate and aldarate metabolism pathways. Spearman correlation analysis results showed that the modulatory effects of PSP on the arginine and proline metabolism, tryptophan metabolism, and glutathione metabolism pathways were related to the regulation of Prevotella, Megamonas funiformis, Escherichia, Blautia and Adlercreutzia. CONCLUSION: Our research revealed the therapeutic, anti-inflammatory and anti-oxidative effects of PSP on T2DM. The mechanisms of PSP on T2DM are associated with improving the dysbiosis of gut microbiota and regulating arginine and proline metabolism, tryptophan metabolism, and glutathione metabolism in serum.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polygonatum , Ratas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , ARN Ribosómico 16S , Triptófano , Metabolómica , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Antiinflamatorios
18.
Phytomedicine ; 113: 154733, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36870307

RESUMEN

BACKGROUND: Jiang-Tang-San-Huang (JTSH) pill, a traditional Chinese medicine (TCM) prescription, has long been applied to clinically treat type 2 diabetes mellitus (T2DM), while the underlying antidiabetic mechanism remains unclarified. Currently, it is believed that the interaction between intestinal microbiota and bile acids (BAs) metabolism mediates host metabolism and promotes T2DM. PURPOSE: To elucidate the underlying mechanisms of JTSH for treating T2DM with animal models. METHODS: In this study, male SD rats received high-fat diet (HFD) and streptozotocin (STZ) injection to induce T2DM and were treated with different dosages (0.27, 0.54 and 1.08 g/kg) of JTSH pill for 4 weeks; metformin was given as a positive control. Alterations of gut microbiota and BA profiles in the distal ileum were assessed by 16S ribosomal RNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Additionally, we conducted quantitative Real Time-PCR and western blotting to determine the mRNA and protein expression levels of intestinal farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), Takeda G-protein-coupled receptor 5 (TGR5) and glucagon-like peptide 1 (GLP-1) as well as hepatic cytochrome P450, family 7, subfamily a, poly-peptide 1 (CYP7A1) and cytochrome P450, family 8, subfamily b, poly-peptide 1 (CYP8B1), which are involved in BAs metabolism and enterohepatic circulation. RESULTS: Here, the results revealed that JTSH treatment significantly ameliorated hyperglycaemia, insulin resistance (IR), hyperlipidaemia, and pathological changes in the pancreas, liver, kidney and intestine and reduced the serum levels of pro-inflammatory cytokines in T2DM model rats. 16S rRNA sequencing and UPLC-MS/MS showed that JTSH treatment could modulate gut microbiota dysbiosis by preferentially increasing bacteria (e.g., Bacteroides, Lactobacillus, Bifidobacterium) with bile-salt hydrolase (BSH) activity, which might in turn lead to the accumulation of ileal unconjugated BAs (e.g., CDCA, DCA) and further upregulate the intestinal FXR/FGF15 and TGR5/GLP-1 signaling pathways. CONCLUSION: The study demonstrated that JTSH treatment could alleviate T2DM by modulating the interaction between gut microbiota and BAs metabolism. These findings suggest that JTSH pill may serve as a promising oral therapeutic agent for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratas , Masculino , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cromatografía Liquida , ARN Ribosómico 16S , Ácidos y Sales Biliares/metabolismo , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Hígado/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Péptido 1 Similar al Glucagón/metabolismo
19.
Front Pharmacol ; 14: 1084617, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843927

RESUMEN

Introduction: Bu-Fei-Huo-Xue capsule (BFHX) has been used to treat pulmonary fibrosis (PF) in clinic. However, the mechanism of Bu-Fei-Huo-Xue capsule on pulmonary fibrosis remains unclear. Recent studies have shown that the changes in gut microbiota were closely related to the progression of pulmonary fibrosis. Modulating gut microbiota provides new thoughts in the treatment of pulmonary fibrosis. Methods: In this study,a mouse model of pulmonary fibrosis was induced using bleomycin (BLM) and treated with Bu-Fei-Huo-Xue capsule. We firstly evaluated the therapeutic effects of Bu-Fei-Huo-Xue capsule on pulmonary fibrosis model mice. Besides,the anti-inflammatory and anti- oxidative effects of Bu-Fei-Huo-Xue capsule were evaluated. Furthermore, 16S rRNA sequencing was used to observe the changes in gut microbiota in pulmonary fibrosis model mice after Bu-Fei-Huo-Xue capsule treatment. Results: Our results showed that Bu-Fei-Huo-Xue capsule significantly reduced the collagen deposition in pulmonary fibrosis model mice. Bu-Fei-Huo-Xue capsule treatment also reduced the levels and mRNA expression of pro-inflammatory cytokines and inhibited the oxidative stress in lung. 16S rRNA sequencing showed that Bu-Fei-Huo-Xue capsule affected the diversity of gut microbiota and the relative abundances of gut microbiota such as Lactobacillus, Lachnospiraceae_NK4A136_group, and Romboutsia. Conclusion: Our study demonstrated the therapeutic effects of Bu-Fei-Huo-Xue capsule on pulmonary fibrosis. The mechanisms of Bu-Fei-Huo-Xue capsule on pulmonary fibrosis may be associated with regulating gut microbiota.

20.
Artículo en Inglés | MEDLINE | ID: mdl-36846048

RESUMEN

Qing-Fei-Shen-Shi decoction (QFSS) consists of Prunus armeniaca L., Gypsum Fibrosum, Smilax glabra Roxb., Coix lacryma-jobi L., Benincasa hispida (Thunb.) Cogn., Plantago asiatica L., Pyrrosia lingua (Thunb.) Farw., Houttuynia cordata Thunb., Fritillaria thunbergii Miq., Cicadae Periostracum, and Glycyrrhizae Radix Et Rhizoma Praeparata Cum Melle. QFSS shows significant clinical efficacy in the treatment of asthma. However, the specific mechanism of QFSS on asthma remains unclear. Recently, multiomics techniques are widely used in elucidating the mechanisms of Chinese herbal formulas. The use of multiomics techniques can better illuminate the multicomponents and multitargets of Chinese herbal formulas. In this study, ovalbumin (OVA) was first employed to induce an asthmatic mouse model, followed by a gavage of QFSS. First, we evaluated the therapeutic effects of QFSS on the asthmatic model mice. Second, we investigated the mechanism of QFSS in treating asthma by using an integrated 16S rRNA sequencing technology and untargeted metabolomics. Our results showed that QFSS treatment ameliorated asthma in mice. In addition, QFSS treatment affected the relative abundances of gut microbiota including Lactobacillus, Dubosiella, Lachnospiraceae_NK4A136_group, and Helicobacter. Untargeted metabolomics results showed that QFSS treatment regulated the metabolites such as 2-(acetylamino)-3-[4-(acetylamino) phenyl] acrylic acid, D-raffinose, LysoPC (15 : 1), methyl 10-undecenoate, PE (18 : 1/20 : 4), and D-glucose6-phosphate. These metabolites are associated with arginine and proline metabolism, arginine biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism. Correlation analysis indicated that arginine and proline metabolism and pyrimidine metabolism metabolic pathways were identified as the common metabolic pathways of 16s rRNA sequencing and untargeted metabolomics. In conclusion, our results showed that QFSS could ameliorate asthma in mice. The possible mechanism of QFSS on asthma may be associated with regulating the gut microbiota and arginine and proline metabolism and pyrimidine metabolism. Our study may be useful for researchers to study the integrative mechanisms of Chinese herbal formulas based on modulating gut microbiota and metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...